///////////////////////////////////////////////////////////////////////////////
|
// Copyright (C) 2002-2016, Open Design Alliance (the "Alliance").
|
// All rights reserved.
|
//
|
// This software and its documentation and related materials are owned by
|
// the Alliance. The software may only be incorporated into application
|
// programs owned by members of the Alliance, subject to a signed
|
// Membership Agreement and Supplemental Software License Agreement with the
|
// Alliance. The structure and organization of this software are the valuable
|
// trade secrets of the Alliance and its suppliers. The software is also
|
// protected by copyright law and international treaty provisions. Application
|
// programs incorporating this software must include the following statement
|
// with their copyright notices:
|
//
|
// This application incorporates Teigha(R) software pursuant to a license
|
// agreement with Open Design Alliance.
|
// Teigha(R) Copyright (C) 2002-2016 by Open Design Alliance.
|
// All rights reserved.
|
//
|
// By use of this software, its documentation or related materials, you
|
// acknowledge and accept the above terms.
|
///////////////////////////////////////////////////////////////////////////////
|
|
#ifndef OD_GEPLANAR_H
|
#define OD_GEPLANAR_H /*!DOM*/
|
|
#include "Ge/GeSurface.h"
|
#include "Ge/GeInterval.h"
|
#include "OdPlatformSettings.h"
|
|
class OdGeLinearEnt3d;
|
|
#include "TD_PackPush.h"
|
|
/** \details
|
This class is the base class for all OdGe planes in 3D space.
|
|
\remarks
|
A parametric point on the plane with parameters u and v maps to the point S(u,v) as follows
|
|
S(u,v) = originOfPlanarEntity + (u * uAxis) + (v * vAxis)
|
|
uAxis and vAxis need not be either normalized or perpendicular, but they must
|
not be colinear.
|
|
<table>
|
Parameter Description Computed as
|
origin Origin of plane. origin
|
axis1 A unit vector in the plane. uAxis.normal()
|
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
|
</table>
|
|
The plane equation for a plane is as follows
|
|
a * X + b * Y + c * Z + d = 0
|
|
Library: TD_Ge
|
|
<group OdGe_Classes>
|
*/
|
class GE_TOOLKIT_EXPORT OdGePlanarEnt : public OdGeSurface
|
{
|
public:
|
|
|
/** \details
|
Returns true and the intersection with the specified linear entity,
|
if and only if the specified linear entity intersects with this plane.
|
|
\param line [in] Any 3D linear entity.
|
\param point [out] Receives the point of intersection.
|
\param tol [in] Geometric tolerance.
|
*/
|
bool intersectWith(
|
const OdGeLinearEnt3d& line,
|
OdGePoint3d& point,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns the point on this plane that is closest to the specified linear entity,
|
and the point on the linear entity that is closest to this plane.
|
|
\param line [in] Any 3D linear entity.
|
\param pointOnLine [out] Receives the closest point on the linear entity.
|
\param tol [in] Geometric tolerance.
|
*/
|
OdGePoint3d closestPointToLinearEnt(
|
const OdGeLinearEnt3d& line,
|
OdGePoint3d& pointOnLine,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns the point on this plane that is closest to the specified plane, and the point
|
on the specified plane that is closest to this plane.
|
|
\param plane [in] Any plane.
|
\param pointOnOtherPlane [out] Receives the closest point on the plane.
|
\param tol [in] Geometric tolerance.
|
*/
|
OdGePoint3d closestPointToPlanarEnt(
|
const OdGePlanarEnt& plane,
|
OdGePoint3d& pointOnOtherPlane,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns true if and only if the specified entity is parallel to this one.
|
|
\param line [in] Any 3D linear entity.
|
\param plane [in] Any plane.
|
\param tol [in] Geometric tolerance.
|
*/
|
bool isParallelTo(
|
const OdGeLinearEnt3d& line,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
bool isParallelTo(
|
const OdGePlanarEnt& plane,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns true if and only if the specified entity is perpendicular to this one.
|
|
\param line [in] Any 3D linear entity.
|
\param plane [in] Any plane.
|
\param tol [in] Geometric tolerance.
|
*/
|
bool isPerpendicularTo(
|
const OdGeLinearEnt3d& line,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
bool isPerpendicularTo(
|
const OdGePlanarEnt& plane,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns true if and only
|
the specified plane is colinear with this one.
|
|
\param plane [in] Any plane.
|
\param tol [in] Geometric tolerance.
|
*/
|
bool isCoplanarTo(
|
const OdGePlanarEnt& plane,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns the parameters of this plane.
|
|
\param origin [in] The origin of this plane.
|
\param uAxis [in] The U-axis.
|
\param vAxis [in] The V-axis.
|
\param uPnt [in] A point at the end of the U-axis.
|
\param vPnt [in] A point at the end of the V-axis.
|
|
\remarks
|
The U-axis and V-axis cannot be colinear, and are defined as follows
|
|
uAxis=uPnt-origin
|
vAxis=vPnt-origin
|
*/
|
void get(
|
OdGePoint3d& origin,
|
OdGeVector3d& uAxis,
|
OdGeVector3d& vAxis) const;
|
void get(
|
OdGePoint3d& uPnt,
|
OdGePoint3d& origin,
|
OdGePoint3d& vPnt) const;
|
|
/** \details
|
Returns an arbitrary point on the plane.
|
*/
|
OdGePoint3d pointOnPlane() const;
|
|
/** \details
|
Returns the normal to the plane as a unit vector.
|
*/
|
OdGeVector3d normal() const;
|
|
/** \details
|
Returns the coefficients of the plane equation for this plane.
|
|
\param a [out] Receives the coefficient a.
|
\param b [out] Receives the coefficient b.
|
\param c [out] Receives the coefficient c.
|
\param d [out] Receives the coefficient d.
|
|
\remarks
|
The plane equation for this plane is as follows
|
|
a * x + b * y + c * z + d = 0
|
*/
|
void getCoefficients(
|
double& a,
|
double& b,
|
double& c,
|
double& d) const;
|
|
/** \details
|
Returns the orthonormal canonical coordinate system of this plane.
|
|
\param origin [out] Receives the origin of this plane
|
\param axis1 [out] Receives a unit vector in the plane.
|
\param axis2 [out] Receives a unit vector perpendicular to the plane.
|
|
\remarks
|
The orthonormal canonical coordinate system associated with a plane defined follows
|
|
<table>
|
Parameter Description Computed as
|
origin Origin of plane. origin
|
axis1 A unit vector in the plane. uAxis.normal()
|
axis2 A unit vector in the plane perpendicular to axis1. normal.crossProduct(axis1)
|
</table>
|
*/
|
void getCoordSystem(
|
OdGePoint3d& origin,
|
OdGeVector3d& axis1,
|
OdGeVector3d& axis2) const;
|
|
OdGePlanarEnt& operator =(
|
const OdGePlanarEnt& plane);
|
|
//////////////////////////////////////////////////////////////////////////
|
// TD Special :
|
|
/** \details
|
Returns projP and true,
|
if and only if there is a point on this surface, projP, where
|
the this surface normal or unitDir (if specified) passes through the point p.
|
|
\param p [in] Any 3D point.
|
\param projP [out] Receives the point on the plane.
|
\param unitDir [in] Unit vector specifying the projection direction.
|
\param tol [in] Geometric tolerance.
|
*/
|
TD_USING(OdGeSurface::project);
|
bool project(
|
const OdGePoint3d& p,
|
const OdGeVector3d& unitDir,
|
OdGePoint3d& projP,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
//////////////////////////////////////////////////////////////////////////
|
|
protected:
|
OdGePlanarEnt();
|
OdGePlanarEnt(const OdGePlanarEnt& plane);
|
};
|
|
#include "TD_PackPop.h"
|
|
#endif // OD_GEPLANAR_H
|
|