///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2002-2016, Open Design Alliance (the "Alliance").
// All rights reserved.
//
// This software and its documentation and related materials are owned by
// the Alliance. The software may only be incorporated into application
// programs owned by members of the Alliance, subject to a signed
// Membership Agreement and Supplemental Software License Agreement with the
// Alliance. The structure and organization of this software are the valuable
// trade secrets of the Alliance and its suppliers. The software is also
// protected by copyright law and international treaty provisions. Application
// programs incorporating this software must include the following statement
// with their copyright notices:
//
// This application incorporates Teigha(R) software pursuant to a license
// agreement with Open Design Alliance.
// Teigha(R) Copyright (C) 2002-2016 by Open Design Alliance.
// All rights reserved.
//
// By use of this software, its documentation or related materials, you
// acknowledge and accept the above terms.
///////////////////////////////////////////////////////////////////////////////
#ifndef OD_GEPLANAR_H
#define OD_GEPLANAR_H /*!DOM*/
#include "Ge/GeSurface.h"
#include "Ge/GeInterval.h"
#include "OdPlatformSettings.h"
class OdGeLinearEnt3d;
#include "TD_PackPush.h"
/** \details
This class is the base class for all OdGe planes in 3D space.
\remarks
A parametric point on the plane with parameters u and v maps to the point S(u,v) as follows
S(u,v) = originOfPlanarEntity + (u * uAxis) + (v * vAxis)
uAxis and vAxis need not be either normalized or perpendicular, but they must
not be colinear.
Parameter Description Computed as
origin Origin of plane. origin
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
The plane equation for a plane is as follows
a * X + b * Y + c * Z + d = 0
Library: TD_Ge
*/
class GE_TOOLKIT_EXPORT OdGePlanarEnt : public OdGeSurface
{
public:
/** \details
Returns true and the intersection with the specified linear entity,
if and only if the specified linear entity intersects with this plane.
\param line [in] Any 3D linear entity.
\param point [out] Receives the point of intersection.
\param tol [in] Geometric tolerance.
*/
bool intersectWith(
const OdGeLinearEnt3d& line,
OdGePoint3d& point,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns the point on this plane that is closest to the specified linear entity,
and the point on the linear entity that is closest to this plane.
\param line [in] Any 3D linear entity.
\param pointOnLine [out] Receives the closest point on the linear entity.
\param tol [in] Geometric tolerance.
*/
OdGePoint3d closestPointToLinearEnt(
const OdGeLinearEnt3d& line,
OdGePoint3d& pointOnLine,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns the point on this plane that is closest to the specified plane, and the point
on the specified plane that is closest to this plane.
\param plane [in] Any plane.
\param pointOnOtherPlane [out] Receives the closest point on the plane.
\param tol [in] Geometric tolerance.
*/
OdGePoint3d closestPointToPlanarEnt(
const OdGePlanarEnt& plane,
OdGePoint3d& pointOnOtherPlane,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns true if and only if the specified entity is parallel to this one.
\param line [in] Any 3D linear entity.
\param plane [in] Any plane.
\param tol [in] Geometric tolerance.
*/
bool isParallelTo(
const OdGeLinearEnt3d& line,
const OdGeTol& tol = OdGeContext::gTol) const;
bool isParallelTo(
const OdGePlanarEnt& plane,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns true if and only if the specified entity is perpendicular to this one.
\param line [in] Any 3D linear entity.
\param plane [in] Any plane.
\param tol [in] Geometric tolerance.
*/
bool isPerpendicularTo(
const OdGeLinearEnt3d& line,
const OdGeTol& tol = OdGeContext::gTol) const;
bool isPerpendicularTo(
const OdGePlanarEnt& plane,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns true if and only
the specified plane is colinear with this one.
\param plane [in] Any plane.
\param tol [in] Geometric tolerance.
*/
bool isCoplanarTo(
const OdGePlanarEnt& plane,
const OdGeTol& tol = OdGeContext::gTol) const;
/** \details
Returns the parameters of this plane.
\param origin [in] The origin of this plane.
\param uAxis [in] The U-axis.
\param vAxis [in] The V-axis.
\param uPnt [in] A point at the end of the U-axis.
\param vPnt [in] A point at the end of the V-axis.
\remarks
The U-axis and V-axis cannot be colinear, and are defined as follows
uAxis=uPnt-origin
vAxis=vPnt-origin
*/
void get(
OdGePoint3d& origin,
OdGeVector3d& uAxis,
OdGeVector3d& vAxis) const;
void get(
OdGePoint3d& uPnt,
OdGePoint3d& origin,
OdGePoint3d& vPnt) const;
/** \details
Returns an arbitrary point on the plane.
*/
OdGePoint3d pointOnPlane() const;
/** \details
Returns the normal to the plane as a unit vector.
*/
OdGeVector3d normal() const;
/** \details
Returns the coefficients of the plane equation for this plane.
\param a [out] Receives the coefficient a.
\param b [out] Receives the coefficient b.
\param c [out] Receives the coefficient c.
\param d [out] Receives the coefficient d.
\remarks
The plane equation for this plane is as follows
a * x + b * y + c * z + d = 0
*/
void getCoefficients(
double& a,
double& b,
double& c,
double& d) const;
/** \details
Returns the orthonormal canonical coordinate system of this plane.
\param origin [out] Receives the origin of this plane
\param axis1 [out] Receives a unit vector in the plane.
\param axis2 [out] Receives a unit vector perpendicular to the plane.
\remarks
The orthonormal canonical coordinate system associated with a plane defined follows
Parameter Description Computed as
origin Origin of plane. origin
axis1 A unit vector in the plane. uAxis.normal()
axis2 A unit vector in the plane perpendicular to axis1. normal.crossProduct(axis1)
*/
void getCoordSystem(
OdGePoint3d& origin,
OdGeVector3d& axis1,
OdGeVector3d& axis2) const;
OdGePlanarEnt& operator =(
const OdGePlanarEnt& plane);
//////////////////////////////////////////////////////////////////////////
// TD Special :
/** \details
Returns projP and true,
if and only if there is a point on this surface, projP, where
the this surface normal or unitDir (if specified) passes through the point p.
\param p [in] Any 3D point.
\param projP [out] Receives the point on the plane.
\param unitDir [in] Unit vector specifying the projection direction.
\param tol [in] Geometric tolerance.
*/
TD_USING(OdGeSurface::project);
bool project(
const OdGePoint3d& p,
const OdGeVector3d& unitDir,
OdGePoint3d& projP,
const OdGeTol& tol = OdGeContext::gTol) const;
//////////////////////////////////////////////////////////////////////////
protected:
OdGePlanarEnt();
OdGePlanarEnt(const OdGePlanarEnt& plane);
};
#include "TD_PackPop.h"
#endif // OD_GEPLANAR_H