/////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2002-2016, Open Design Alliance (the "Alliance"). // All rights reserved. // // This software and its documentation and related materials are owned by // the Alliance. The software may only be incorporated into application // programs owned by members of the Alliance, subject to a signed // Membership Agreement and Supplemental Software License Agreement with the // Alliance. The structure and organization of this software are the valuable // trade secrets of the Alliance and its suppliers. The software is also // protected by copyright law and international treaty provisions. Application // programs incorporating this software must include the following statement // with their copyright notices: // // This application incorporates Teigha(R) software pursuant to a license // agreement with Open Design Alliance. // Teigha(R) Copyright (C) 2002-2016 by Open Design Alliance. // All rights reserved. // // By use of this software, its documentation or related materials, you // acknowledge and accept the above terms. /////////////////////////////////////////////////////////////////////////////// #ifndef OD_GE_MATRIX_2D_H #define OD_GE_MATRIX_2D_H /*!DOM*/ #include "Ge/GeGbl.h" #include "Ge/GePoint2d.h" class OdGeVector2d; class OdGeLine2d; class OdGeTol; #include "TD_PackPush.h" /** \details This class represents 2D transformation matrices that define affine ( translation, rotation, and/or scaling ) transformations. \remarks OdGeMatrix2d may be viewed as an array[3][3] of doubles. An OdGeMatrix2d, M, can be expressed as a 3 3 matrix*, in the form a00 a01 t0 a10 a11 t1 0 0 1 The linear part of M is the matrix a00 a01 a10 a11 The translational part of M is the column t0 t1 The origin of the coordinate system of M is (t0, t1). Library: TD_Ge */ class GE_TOOLKIT_EXPORT OdGeMatrix2d { public: OdGeMatrix2d(); //OdGeMatrix2d(const OdGeMatrix2d& src); //OdGeMatrix2d& operator =(const OdGeMatrix2d& src); /** \details The identity matrix. */ GE_STATIC_EXPORT static const OdGeMatrix2d kIdentity; /** \details Sets this matrix to the identity matrix, and returns a reference to this matrix. */ OdGeMatrix2d& setToIdentity(); /** \remarks Returns the product (this matrix) * matrix. */ OdGeMatrix2d operator* ( const OdGeMatrix2d& matrix) const; /** \remarks Sets this matrix to the product (this matrix) * matrix, and returns a reference to this matrix. */ OdGeMatrix2d& operator*= ( const OdGeMatrix2d& matrix); /** \details Sets this matrix to the product leftSide * (this matrix), and returns a reference to this matrix. \param leftSide [in] Any 2D matrix */ OdGeMatrix2d& preMultBy( const OdGeMatrix2d& leftSide); /** \details Sets this matrix to the product (this matrix) * rightSide, and returns a reference to this matrix. \param rightSide [in] Any 2D matrix */ OdGeMatrix2d& postMultBy( const OdGeMatrix2d& rightSide); /** \details Sets this matrix to the product matrix1 * matrix2, and returns a reference to this matrix. \param matrix1 [in] Any 2D matrix \param matrix2 [in] Any 2D matrix */ OdGeMatrix2d& setToProduct( const OdGeMatrix2d& matrix1, const OdGeMatrix2d& matrix2); // Multiplicative inverse. // /** \details Sets this matrix to its inverse, and returns a reference to this matrix. */ OdGeMatrix2d& invert(); /** \details Returns the inverse of this matrix. */ OdGeMatrix2d inverse() const; /** \details Returns true if and only if this matrix is singular. \remarks * A matrix is singular if and only if its determinant == 0. * A singular matrix cannot be inverted. */ bool isSingular(const OdGeTol& tol = OdGeContext::gTol) const; /** \details Sets this matrix to its transpose, and returns a reference to this matrix. */ OdGeMatrix2d& transposeIt(); /** \details Returns the transpose of this matrix. */ OdGeMatrix2d transpose() const; /** \details Equality operator. */ bool operator ==( const OdGeMatrix2d& matrix) const; /** \details Inequality operator. */ bool operator !=( const OdGeMatrix2d& matrix) const; /** \details Returns true if and only if matrix is identical to this one, within the specified tolerance. \param matrix [in] Matrix to be compared. \param tol [in] Geomentric tolerance. */ bool isEqualTo( const OdGeMatrix2d& matrix, const OdGeTol& tol = OdGeContext::gTol) const; /** \details Returns true if and only the columns vectors of the linear part of this matrix are of equal length and perpendicular to each other within the specified tolerance. \param tol [in] Geomentric tolerance. */ bool isUniScaledOrtho( const OdGeTol& tol = OdGeContext::gTol) const; /** \details Returns true if and only the column vectors of the linear part of this matrix are perpendicular to each other within the specified tolerance. \param tol [in] Geomentric tolerance. */ bool isScaledOrtho( const OdGeTol& tol = OdGeContext::gTol) const; /** \details Returns the scale factor of this matrix. \remarks The scale factor is the square root of the longest column vector of the linear part of this matrix. */ double scale() const; // Determinant // /** \details Returns the determinant of this matrix. */ double det() const; /** \details Sets the translation part of the matrix to the specified vector. \param vect [in] Translation vector. */ OdGeMatrix2d& setTranslation( const OdGeVector2d& vect); /** Returns the translation vector of this matrix, or the matrix of the translation by vector. \param vect [in] Translation vector. */ OdGeVector2d translation() const; static OdGeMatrix2d translation( const OdGeVector2d& vector); // Retrieve scaling, rotation, mirror components // /** \details Returns true if an only if this matrix is conformal (isUniScaledOrtho()), and returns the scale factor, angle of rotation, the presence of a mirror component to the matrix, and the direction of reflection. \param scale [out] Receives the scale factor. \param angle [out] Receives the angle of rotation. \param isMirror [out] Receives true if andn only if the matrix has a mirror component. \param reflex [in] Direction of reflection. \remarks reflex is valid if and only if isMirror is true. */ bool isConformal( double& scale, double& angle, bool& isMirror, OdGeVector2d& reflex) const; // Set/get coordinate system // /** \details Sets this matrix to the matrix which maps the WCS to the coordinate system defined by origin, X-axis, and Y-axis, and returns a reference to this matrix. \param origin [in] Origin of the coordinate system. \param xAxis [in] X-axis of the coordinate system. \param yAxis [in] Y-axis of the coordinate system. */ OdGeMatrix2d& setCoordSystem( const OdGePoint2d& origin, const OdGeVector2d& xAxis, const OdGeVector2d& yAxis); /** \details Returns the origin, X-axis, and Y-axis of the coordinate system to which this matrix maps the WCS. \param origin [out] Receives the origin of the coordinate system. \param xAxis [out] Receives the X-axis of the coordinate system. \param yAxis [out] Receives the Y-axis of the coordinate system. */ void getCoordSystem( OdGePoint2d& origin, OdGeVector2d& xAxis, OdGeVector2d& yAxis) const; /** \details Sets this matrix to the matrix which translates by vect, and returns a reference to this matrix. \param vect [in] Translation vector. */ OdGeMatrix2d& setToTranslation( const OdGeVector2d& vect); /** \details Sets this matrix to the matrix which rotates by angle about center, and returns a reference to this matrix. \param angle [in] Rotation angle. \param center [in] Center of rotation. */ OdGeMatrix2d& setToRotation( double angle, const OdGePoint2d& center = OdGePoint2d::kOrigin); /** \details Sets this matrix to the matrix which scales by scale about tcenter, and returns a reference to this matrix. \param scale [in] Scale factor. \param center [in] Center of scaling. */ OdGeMatrix2d& setToScaling( double scale, const OdGePoint2d& center = OdGePoint2d::kOrigin); /** \details Sets this matrix to the matrix which mirrors about the specified object, and returns a reference to this matrix. \param mirrorPoint [in] Mirror point. \param mirrorLine [in] Mirror line entity. */ OdGeMatrix2d& setToMirroring( const OdGePoint2d& mirrorPoint); OdGeMatrix2d& setToMirroring( const OdGeLine2d& mirrorLine); /** \details Sets this matrix to the matrix which maps the coordinate system defined by fromOrigin, fromXAxis, and fromYAxis, to the coordinate system defined by toOrigin, toXAxis, and toYAxis, and returns a reference to this matrix. \param fromOrigin [in] Origin of the initial coordinate system. \param fromXAxis [in] X-axis of the initial coordinate system. \param fromYAxis [in] Y-axis of the initial coordinate system. \param toOrigin [in] Origin of the initial coordinate system. \param toXAxis [in] X-axis of the initial coordinate system. \param toYAxis [in] Y-axis of the initial coordinate system. */ OdGeMatrix2d& setToAlignCoordSys( const OdGePoint2d& fromOrigin, const OdGeVector2d& fromXAxis, const OdGeVector2d& fromYAxis, const OdGePoint2d& toOrigin, const OdGeVector2d& toXAxis, const OdGeVector2d& toYAxis); // static OdGeMatrix2d translation ( // const OdGeVector2d& vect); /** \details Returns the matrix which rotates by angle about center. \param angle [in] Rotation angle. \param center [in] Center of rotation. */ static OdGeMatrix2d rotation( double angle, const OdGePoint2d& center = OdGePoint2d::kOrigin); /** \details Returns the matrix which scales by scale about center. \param scale [in] Scale factor. \param center [in] Center of scaling. */ static OdGeMatrix2d scaling( double scale, const OdGePoint2d& center = OdGePoint2d::kOrigin); /** \details Returns the matrix which mirrors about the specified object. \param mirrorPoint [in] Mirror point. \param mirrorLine [in] Mirror line entity. */ static OdGeMatrix2d mirroring( const OdGePoint2d& mirrorPoint); static OdGeMatrix2d mirroring( const OdGeLine2d& mirrorLine); /** \details Returns the matrix which maps the coordinate system defined by fromOrigin, fromXAxis, and fromYAxis, to the coordinate system defined by toOrigin, toXAxis, and toYAxis. \param fromOrigin [in] Origin of the initial coordinate system. \param fromXAxis [in] X-axis of the initial coordinate system. \param fromYAxis [in] Y-axis of the initial coordinate system. \param toOrigin [in] Origin of the initial coordinate system. \param toXAxis [in] X-axis of the initial coordinate system. \param toYAxis [in] Y-axis of the initial coordinate system. */ static OdGeMatrix2d alignCoordSys( const OdGePoint2d& fromOrigin, const OdGeVector2d& fromXAxis, const OdGeVector2d& fromYAxis, const OdGePoint2d& toOrigin, const OdGeVector2d& toXAxis, const OdGeVector2d& toYAxis); // For convenient access to the data. // /** \remarks Returns or references entry[row] as matrix[row]. \param row [in] Row. */ const double* operator []( int row) const; double* operator []( int row); /** \remarks Returns or references entry[row][column] as matrix(row,column). \param row [in] Row. \param column [in] Column. */ double operator ()( int row, int column) const; double& operator ()( int row, int column); // [row][column] double entry[3][3]; }; // these operations really decrease rendering performance in non-inline case : inline const double* OdGeMatrix2d::operator [](int row) const { return entry[row]; } inline double* OdGeMatrix2d::operator [](int row) { return entry[row]; } inline double OdGeMatrix2d::operator ()(int row, int column) const { return entry[row][column]; } inline double& OdGeMatrix2d::operator ()(int row, int column) { return entry[row][column]; } #include "TD_PackPop.h" #endif // OD_GE_MATRIX_2D_H