///////////////////////////////////////////////////////////////////////////////
|
// Copyright (C) 2002-2016, Open Design Alliance (the "Alliance").
|
// All rights reserved.
|
//
|
// This software and its documentation and related materials are owned by
|
// the Alliance. The software may only be incorporated into application
|
// programs owned by members of the Alliance, subject to a signed
|
// Membership Agreement and Supplemental Software License Agreement with the
|
// Alliance. The structure and organization of this software are the valuable
|
// trade secrets of the Alliance and its suppliers. The software is also
|
// protected by copyright law and international treaty provisions. Application
|
// programs incorporating this software must include the following statement
|
// with their copyright notices:
|
//
|
// This application incorporates Teigha(R) software pursuant to a license
|
// agreement with Open Design Alliance.
|
// Teigha(R) Copyright (C) 2002-2016 by Open Design Alliance.
|
// All rights reserved.
|
//
|
// By use of this software, its documentation or related materials, you
|
// acknowledge and accept the above terms.
|
///////////////////////////////////////////////////////////////////////////////
|
|
#ifndef OD_GEPLANE_H
|
#define OD_GEPLANE_H /*!DOM*/
|
|
#include "Ge/GePlanarEnt.h"
|
#include "TD_PackPush.h"
|
|
class OdGeBoundedPlane;
|
class OdGeLine3d;
|
class OdGeLineSeg3d;
|
|
/** \details
|
This class represents infinite planes in 3D space.
|
|
Library: TD_Ge
|
|
<group OdGe_Classes>
|
|
\sa
|
<link ge_OdGePlane.html, Working with Planes>
|
*/
|
class GE_TOOLKIT_EXPORT OdGePlane : public OdGePlanarEnt
|
{
|
public:
|
|
|
GE_STATIC_EXPORT static const OdGePlane kXYPlane; // XY *plane*.
|
GE_STATIC_EXPORT static const OdGePlane kYZPlane; // YZ *plane*.
|
GE_STATIC_EXPORT static const OdGePlane kZXPlane; // ZY *plane*.
|
|
/** \param origin [in] Origin of plane.
|
\param normal [in] The normal to the plane.
|
\param uPnt [in] A point at the end of the U-axis.
|
\param vPnt [in] A point at the end of the V-axis.
|
\param uAxis [in] The U-axis.
|
\param vAxis [in] The V-axis.
|
\param a [in] Coefficient a.
|
\param b [in] Coefficient b.
|
\param c [in] Coefficient c.
|
\param d [in] Coefficient d.
|
|
\remarks
|
A parametric point on the plane with parameters u and v maps to the point S(u,v) as follows
|
|
S(u,v) = originOfPlanarEntity + (u * uAxis) + (v * vAxis)
|
|
uAxis and vAxis need not be either normalized or perpendicular, but they must
|
not be collinear.
|
|
The orthonormal canonical coordinate system associated with a plane defined follows
|
|
@untitled table
|
origin Origin of plane. originOfPlanarEntiity
|
axis1 A unit vector in the plane. uAxis.normal()
|
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
|
|
The plane equation for this plane is as follows
|
|
a * X + b * Y + c * Z + d = 0
|
*/
|
OdGePlane();
|
OdGePlane(
|
const OdGePlane& plane);
|
OdGePlane(
|
const OdGePoint3d& origin,
|
const OdGeVector3d& normal);
|
OdGePlane(
|
const OdGePoint3d& uPnt,
|
const OdGePoint3d& origin,
|
const OdGePoint3d& vPnt);
|
OdGePlane(
|
const OdGePoint3d& origin,
|
const OdGeVector3d& uAxis,
|
const OdGeVector3d& vAxis);
|
OdGePlane(
|
double a,
|
double b,
|
double c,
|
double d);
|
|
/** \details
|
Returns true and the intersection point or line, if and only
|
if the specified line or plane intersects with this plane.
|
|
\param line [in] Any 3D linear entity.
|
\param plane [in] Any plane.
|
\param intLine [out] Receives the intersection line.
|
\param point [out] Receives the intersection point.
|
\param tol [in] Geometric tolerance.
|
*/
|
TD_USING(OdGePlanarEnt::intersectWith);
|
bool intersectWith(
|
const OdGePlane& plane,
|
OdGeLine3d& intLine,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
bool intersectWith(
|
const OdGeBoundedPlane& plane,
|
OdGeLineSeg3d& intLine,
|
const OdGeTol& tol = OdGeContext::gTol) const;
|
|
/** \details
|
Returns the signed distance to (elevation of) the specified point.
|
|
\param point [in] Any 3D point.
|
*/
|
double signedDistanceTo(
|
const OdGePoint3d& point) const;
|
|
/** \details
|
Sets the parameters for this plane according to the arguments.
|
|
\param origin [in] Origin of plane.
|
\param normal [in] The normal to the plane.
|
\param uPnt [in] A point at the end of the U-axis.
|
\param vPnt [in] A point at the end of the V-axis.
|
\param uAxis [in] The U-axis.
|
\param vAxis [in] The V-axis.
|
\param a [in] Coefficient a.
|
\param b [in] Coefficient b.
|
\param c [in] Coefficient c.
|
\param d [in] Coefficient d.
|
|
\remarks
|
Returns a reference to this plane.
|
|
A parametric point on the plane with parameters u and v maps to the point S(u,v) as follows
|
|
S(u,v) = originOfPlanarEntity + (u * uAxis) + (v * vAxis)
|
|
uAxis and vAxis need not be either normalized or perpendicular, but they must
|
not be collinear.
|
|
The orthonormal canonical coordinate system associated with a plane defined follows
|
|
@untitled table
|
origin Origin of plane. originOfPlanarEntiity
|
axis1 A unit vector in the plane. uAxis.normal()
|
axis2 A unit vector perpendicular to the plane. uAxis.crossProduct(vAxis).normal()
|
|
The plane equation for this plane is as follows
|
|
a * X + b * Y + c * Z + d = 0
|
*/
|
OdGePlane& set(
|
const OdGePoint3d& point,
|
const OdGeVector3d& normal);
|
OdGePlane& set(
|
const OdGePoint3d& uPnt,
|
const OdGePoint3d& origin,
|
const OdGePoint3d& vPnt);
|
OdGePlane& set(
|
double a,
|
double b,
|
double c,
|
double d);
|
OdGePlane& set(
|
const OdGePoint3d& origin,
|
const OdGeVector3d& uAxis,
|
const OdGeVector3d& vAxis);
|
|
OdGePlane& operator =(
|
const OdGePlane& plane);
|
|
private:
|
OdGePlane(OdGeEntity3dImpl*);
|
};
|
|
#include "TD_PackPop.h"
|
|
#endif // OD_GEPLANE_H
|
|